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ABSTRACT
This paper will propose a novel approach in combining Evolution-
ary Algorithms with symbolic techniques in order to improve the
convergence of the algorithm in the presence of large search spaces
containing only few feasible solutions. Such problems can be en-
countered in many real-world applications. Here, we will use the
example ofdesign space explorationof embedded systems to il-
lustrate the benefits of our approach. The main idea is to integrate
symbolic techniques into the Evolutionary Algorithm to guide the
search towards thefeasible region. We will present experimental
results showing the advantages of our novel approach.

Categories and Subject Descriptors
I.1.2 [Algorithms ]: Nonalgebraic algorithms; J.6 [Computer-aided
engineering]: Computer-aided design (CAD)

General Terms
Algorithms, Performance

Keywords
Application, Multi-objective optimization, Speedup technique

1. INTRODUCTION
Today’s life is essentially affected byembedded systems. Since

these systems are embedded in nearly everything around us, we
do not recognize embedded systems at first glance. Most popular
examples of embedded systems include automotive and telecom-
munication electronics as well as industrial and domestic automa-
tion systems. The goal in embedded system design is to develop
an electronic system which meets several constraints imposed on
the realization, the so-calledimplementation. Moreover, the im-
plementation is required to be optimized for many objectives si-
multaneously. Typical objectives in embedded system design are:
the costs of a system, its power consumption, its weight, the data
throughput, etc.
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In order to allow an unbiased search, the task ofdesign space
explorationis performed before selecting (decision making) the ac-
tual implementation. Design space exploration is a very challeng-
ing constrained multi-objective optimization task [10, 7]. The basic
optimization problem is a selection and assignment problem where
appropriate hardware resources must be selected for the implemen-
tation of the embedded system and the processes which represent
the application must be assigned to the selected resources. The task
of assigning processes to resources, is known to beN P -complete.
Obviously, there is an inherent tradeoff between the number of re-
sources used and the performance of the systems. Many successful
design space exploration methodologies based on Evolutionary Al-
gorithms are reported in literature [10, 7, 5, 3, 9]. Due to data
dependencies among the processes, nearly all possible implemen-
tations areinfeasible, as will be shown in this paper.

Other constraint optimization problemsknown from literature
are often constrained in the objective space only (see e.g. [4, 1]).
Our problem is somehow different, as the feasibility of solution de-
pends on thestructureof the solution [3]. Only if the solution found
is feasible, we are able to determine the correspondingobjective
values. Thus, the task of design space exploration is twofold: (i)
guide the search towards thefeasible regionand (ii) optimizethe
feasible solutions. In this paper, we will focus on the first task.
We will present a sophisticated feasibility test using symbolic tech-
niques in order to guide the search. The feasibility test uses Binary
Decision Diagrams (BDD) and a technique known asfunctional
simulation by BDDs[13]. We will provide experimental results
showing the efficiency of our novel method. Note, the proposed
idea is not limited to the task of design space exploration of em-
bedded systems.

The rest of the paper is organized as follows: Section 2 con-
tains the definition of the search space, which is represented by a
so calledspecification graph. This section also defines the task of
design space exploration and the actual optimization problem. In
Section 3, we describe how the optimization problem can be solved
using Evolutionary Algorithms. Here, the test for feasible solutions
as well as our proposed improvements will be discussed in detail.
We will provide experimental results showing the advantages of our
novel approach in Section 4. Finally, Section 5 will conclude the
paper and will show some future research directions.

2. PROBLEM STATEMENT
In this paper, we consider the problem of design space explo-

ration for embedded systems. In contrast to general purpose com-
puters, embedded systems are designed for a particular application
while satisfying several constraints. Basically, the design space
exploration problem is a multi-objective selection and assignment
problem. Moreover, typical problems known from real-world ap-
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Figure 1: Specification graph for an MPEG4 encoder consist-
ing of process graphgp and an architecture graphga as well as
additional mapping edgesEm represented by dashed lines.

plications show search spaces containing only a very small fraction
of feasible solutions.

2.1 Defining the Search Space
To allow a mathematical model of the search space, the concept

of a so-calledspecification graphis needed. A specification graph
specifies an embedded system by means of its applications, archi-
tectures, and the relation between these two views. Here, we use a
graph-based approach already proposed by Blickle et al. [3]. The
specification graph consists of two main components:

• A given application that should be mapped onto a suitable
architecture of hardware components as well as the class of
possible architectures are described each by means of a uni-
versal directeddependence graph g= (V,E).

• The user-defined mapping constraints between tasks and ar-
chitecture components are specified in a specification graph
gs = (Vs,Es). Additional parameters which are used for for-
mulating the objective functions and further functional con-
straints may be assigned to either vertices or edges ofgs.

At first, the (well known) concept of a dependence graph is used
to describe the functional specification as well as the target archi-
tecture variety.

Definition 1 (Dependence Graph)A dependence graphg is a di-
rected graph g= (V,E). V is a finite set of vertices and E⊆ (V×V)
is a set of edges.

For example, the dependence graph to model the data flow de-
pendencies of a given specification will be termedprocess graph
gp = (Vp,Ep) in the following. Here,Vp is the set of vertices which
model either functional operations or communication operations.
The edges inEp model dependence relations, i.e., define a partial
order among the operations.

Example 1 The example in the upper part of Figure 1 shows an
MPEG4 encoder. We start with a given scene, where the scene
is either natural, synthesized or both. This scene is decomposed
into audio/visual objects like images, video, animated 2D meshes,
speech, synthesized sounds, etc (Decomposition Layer DL). Each
audio/visual object is coded by an appropriate coding algorithm
(indicated by the coding layer CL). In the next step (Access Unit
Layer AL), the data are provided with time stamps, data type (au-
dio, video), clock references, etc. The FlexMux Layer (Flexible

Multiplexer FL) allows to group streams with the same QoS (qual-
ity of service) requirements. Between two data flow dependent op-
erations, we insert an additional vertex in order to model the re-
quired communication (C1...5).

The architecture including functional resources and buses can
also be modeled by a dependence graph termedarchitecture graph
ga = (Va,Ea). Va may consist of two subsets containing functional
resources (hardware units like an adder, a multiplier, a RISC pro-
cessor, a dedicated processor, or an ASIC) and communication re-
sources (resources that handle the communication like shared buses
or point-to-point connections). An edgee∈ Ea models a directed
link between two resources. All the resources are viewed aspoten-
tially allocatablecomponents.

Example 2 The process graph given in the previous example is
mapped onto a target architecture shown in the lower part of Fig-
ure 1. The architecture consists of four functional resources, two
programmable RISC processors, two field programmable gate ar-
rays (FPGAs), and a single shared bus (SB). Additionally, the pro-
cessor RISC1 is equipped with two special ports.

Next, it is shown how user-defined mapping constraints repre-
senting possible bindings of processes onto resources can be spec-
ified in a graph based model.

Definition 2 (Specification Graph) A specification graphgs(Vs,
Es) consists of a process graph gp(Vp,Ep), an architecture graph
ga(Va,Ea), and a set ofmapping edgesEm. In particular, Vs =
Vp∪Va, Es = Ep∪Ea∪Em, where Em ⊆Vp×Va.

Consequently, mapping edges relate the vertices of the process
graph to vertices of the architecture graph. The edges represent
user-defined mapping constraints in the form of a relation: “can be
implemented by”.

Example 3 Figure 1 shows an example of a specification graph.
The dashed edges between the two graphs are the additional map-
ping edges Em that describe all possible mappings. For example,
operation DL can be executed only on RISC1. Only the coding
layer (CL) can be executed on the alternative resources RISC2,
FPGA1, and FPGA2. The mapping edges e= (vp,va) ∈ Em are
annotated with delay and power consumption values which arise
when operation vp is executed on resource va. Furthermore, all re-
sources in Figure 1 are annotated with allocation cost and power
consumption values. These values have to be taken into account
if the corresponding resource is used in an implementation of the
problem.

In the above way, the model of a specification graph allows a
flexible expression of the expert knowledge about useful architec-
tures and mappings. The goal of design space exploration is to find
optimal solutions which satisfy the specification given by the spec-
ification graph. Such a solution is called afeasible implementation
of the embedded systems. Due to the multi-objective nature of this
optimization problem, there is in general more than a single optimal
solution.

2.2 System Synthesis
Before discussing the design space exploration in detail, we for-

malize the notion of afeasible implementation(cf. [3]). An imple-
mentation, being the result of a system synthesis, consists of three
parts:
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1. theallocation that indicates which elements of the architec-
ture graph are used in the implementation,

2. thebinding, i.e., the set of mapping edges which define the
binding of vertices in the process graph to components of the
architecture graph, and

3. thescheduleassigning a start time to each operation in the
process graph.

Before defining the termimplementationformally, Blickle et al. [3]
introduce the so-calledactivationof vertices and edges:

Definition 3 (Activation) Theactivationof a specification graph
gs = (Vs,Es) is a functiona :Vs×Es 7→ {0,1} that assigns to each
edge e∈ Es and to each vertex v∈Vs the value1 (activated) or0
(not activated).

The task of system synthesis is to determine an implementation,
i.e., assigning activity values to vertices and edges of the specifica-
tion graph. An implementation consists of anallocation, abinding,
and aschedule. For the sake of simplicity, it is assumed that all
verticesv ∈ Vp and all edgese∈ Ep of the process graphgp are
activated subsequently.

Definition 4 (Allocation) An allocationα of a given specification
graph gs is the subset of all activated vertices and edges of the
architecture graph ga, i.e.,

α = αv∪αe,where
αv = {v∈Va | a(v) = 1}
αe = {e∈ Ea | a(e) = 1}

Here, αv denotes the set of allocated vertices andαe denotes the
set of allocated edges.

Definition 5 (Binding) A bindingβ of a given specification graph
gs is the subset of activated mapping edges Em, i.e.,

β = {e∈ Em | a(e) = 1}

In order to restrict the search space, it is useful to determine
the set offeasible allocationsand feasible bindings. A feasible
binding guarantees that communications demanded by the process
graph can be established in the allocated architecture. This property
makes the resulting optimization problem hard to be solved.

Definition 6 (Feasible Binding) Given a specification graph gs and
an allocationα, a feasible bindingis a bindingβ that satisfies the
following requirements:

1. Each activated mapping edge e∈ β ends at an activated ver-
tex, i.e.,∀e= (vp,va) ∈ β : va∈ α.

2. For each process graph vertex v∈ Vp, exactly one outgoing
mapping edge e∈ Em is activated, i.e.,∣∣{e∈ β | e= (vp,va),va∈Va

}∣∣ = 1.

3. For each process graph edge e∈ (vi ,v j ) ∈ Ep:

• either both operations are mapped onto the same ver-
tex, i.e.,̃vi = ṽ j with (vi , ṽi),(v j , ṽ j ) ∈ β,

• or there exists an activated edgẽe = (ṽi , ṽ j ) ∈ Ea∩α
in the architecture graph to handle the communication
associated with edge e, i.e.,

(ṽi , ṽ j ) ∈ Ea∩α with (vi , ṽi),(v j , ṽ j ) ∈ β.
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Figure 2: (a) For each processp∈Vp exactly one outgoing map-
ping edge has to be activated. (b) In order to establish the
required communication (p0,p1) ∈ Ep, we have to execute the
processesp0 and p1 on the same resourcer0 or on adjacent re-
sources.

Example 4 The second and third requirement are depicted in Fig-
ure 2: To achieve a feasible binding, the second requirement makes
the processp0 in Figure 2(a) to be bound to exactly one of the
allocated resourcesr0 . . . rn. The third requirement is depicted in
Figure 2(b). Here, the processp0 must be bound to the resource
r0 and thus the dependent processp1 must be bound either to the
same resourcer0 or to one of the adjacent resourcesr1 . . . rn.

Definition 7 (Feasible Allocation) A feasible allocationis an al-
locationα that allows at least one feasible bindingβ.

Finally, aschedulecan be computed. Therefore, the delay times
delay(v,β) for each vertexv∈Vp are needed. In general, this delay
depends on the current binding of the implementation. In other
words, the execution time is affected by the resource an operation
is bound to. These delay times are annotated at the mapping edges
in the specification graph as described in the preceding section.

Definition 8 (Schedule) Given a specification graph gs contain-
ing a process graph gp, a feasible bindingβ, and a function delay
which determines the execution time delay(v,β) ∈ Z≥0 of a pro-
cess graph vertex v∈ Vp. A scheduleis a functionτ : Vp 7→ Z≥0
that satisfies for all edges e= (vi ,v j ) ∈ Ep:

τ(v j )≥ τ(vi)+delay(vi ,β)

The scheduleτ determines the start time of each operationvi ∈Vp
whereτ(vi) represents the start time of operationvi .

With the above discussion, we can define animplementationby
means of a feasible allocation, a feasible binding, and a schedule.

Definition 9 (Implementation) Given a specification graph gs, a
(feasible) implementationψ is a triple (α,β,τ) whereα is a fea-
sible allocation,β is a corresponding feasible binding, andτ is a
schedule.

Example 5 Consider the case that the operation CL in Figure 1
is mapped onto the resource RISC2 as shown in Figure 3(a). The
allocation of vertices is given as:

αv = {SB,RISC1,RISC2,Network,Scene}

A feasible binding is given by:

β = {(C1,Scene),(DL,RISC1),(C2,SB),(CL,RISC2),
(C3,SB),(AL ,RISC1),(C4,RISC1),(FL,RISC1),
(C5,Network)}
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Figure 3: (a) Allocation and Binding of the MPEG4 encoder
(see Figure 1). (b) Schedule visualized by a Gantt chart.

Given this allocation and binding, one can see that the implemen-
tation is indeed feasible, i.e.,α and β are feasible. Figure 3(b)
shows the scheduleτ for this implementation using a so-called
Gantt chart.

Given the implementationψ, some properties ofψ can be cal-
culated. For example, the total cost of the implementation shown
in Figure 3 is given by cost(ψ) = 1600. The total power consump-
tion power is given by power(ψ) = 1655and the latency ofψ is
latency(ψ) = 60. The cost and power values are obtained by sim-
ply adding thec andp attributes of the activated elements, respec-
tively. The latency results from the computed schedule.

2.3 The Optimization Problem
Now, the task of system synthesis can be formulated as a combi-

natorialMulti-objective Optimization Problem(MOP).

Definition 10 (System Synthesis)The task ofsystem synthesisis
the following multi-objective optimization problem (see e.g., [15])
where without loss of generality, only minimization problems are
assumed here:

minimize f (x),
subject to:

x represents a feasible implementation ψ = ψ(x),
ci(x)≤ 0, ∀i ∈ {1, . . . ,q}

where x= (x1,x2, . . . ,xm) ∈ X is thedecision vector, X is thede-
cision space, f (x) = ( f1(x), f2(x), . . . , fn(x)) ∈ Y is theobjective
functionand Y is theobjective space.

Here,x is an encoding calleddecision vectorrepresenting an im-
plementationψ. Moreover, there areq constraintsci(x), i = 1, . . . ,q
imposed onx defining the set of feasible implementations. Theob-
jective function fis n-dimensional, i.e.,n objectives are optimized
simultaneously. For example, in embedded system design it is re-
quired that the monetary cost and the power dissipation of an im-
plementation are minimized simultaneously. Often, objectives in
embedded system design are conflicting [6].

Only thosedesign points x∈ X that represent a feasible imple-
mentationψ and that satisfy all constraintsci , are in the set of
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Figure 4: The decoding of an individual to an implementation.

feasible solutions, or for short in thefeasible setcalledXf = {x |
ψ(x) being feasible∧ c(x) ≤ 0} ⊆ X. The objective space ofX is
defined asY = f (X) ⊂ Rn, where the objective functionf on the
setX is given by f (X) = { f (x) | x∈ X}. Analogously, thefeasible
regionin the objective space is denoted byYf = f (Xf) = { f (x) | x∈
Xf}.

In single-objective optimization, the feasible setXf is totally or-
dered, whereas in multi-objective optimization problems, the feasi-
ble setXf is only partially ordered and, thus, there is generally not
only one global optimum, but a set of so-calledPareto points. A
Pareto-optimal implementation is a design point which is not worse
than any other feasible solution in the design space in all objectives.

In the following, the necessary definitions for multi-objective op-
timization problems are given (cf. [15, 11]). Without loss of gener-
ality, only minimization problems are considered.

Definition 11 (Pareto dominance)For any two decision vectors a
and b,

a� b (a dominates b)⇔∀i : fi(a)≤ fi(b)∧∃i : fi(a) < fi(b)

Definition 12 (Pareto optimality) A decision vector x∈ Xf is said
to be non-dominated regarding a set A⊆ Xf iff

@a∈ A : a� x.

A decision vector x is said to be Pareto-optimal iff x is non-dominated
regarding Xf .

The set of all Pareto-optimal solutions is called thePareto-optimal
set, or thePareto set Xp for short. An approximation of the Pareto
setXp will be termedapproximation set Xa in the following. Fur-
thermore, thePareto-optimal frontis given byYp = f (Xp).

3. DESIGN SPACE EXPLORATION
In this section, we will show how to solve the system synthesis

problem by using Evolutionary Algorithms (EAs). The EA deter-
mines the allocation and bindings. Afterwards, the schedule of an
implementation is computed by a list scheduler. The main idea is
outlined in Figure 4.

3.1 The Evolutionary Algorithm
To obtain a meaningful encoding for the task of system synthesis,

one has to address the question of how to handle infeasible alloca-
tions and infeasible bindings suggested by the EA. Obviously, if
allocations and bindings may be randomly chosen, a lot of them
can be infeasible. In general, there are two different methods to
handle these infeasible implementations: Punishing and Repairing
[3]. Here, repairing is used. Because of the well known proper-
ties of feasible allocations and bindings, one can “repair” infeasi-
ble individuals by incorporating domain knowledge in these repair
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decoding
IN: The individual j consisting of allocationalloc, repair

allocation priority listLR, binding order listLO, and
binding priority listLB(v).

OUT: The allocationα and the bindingβ if both are feasible,
( /0, /0) if no feasible binding is represented by the
individual j

BEGIN
ᾱ← allocation(alloc( j),LR( j))
β̄← binding(LB( j),LO( j), ᾱ)
IF β̄ = /0

RETURN ( /0, /0)
ENDIF
β← β̄
α← update allocation(ᾱ, β̄)
RETURN (α,β)

END

Figure 5: Algorithm to decode the allocationα and the binding
β from a given individual j.

mechanisms easily. But as the determination of a feasible alloca-
tion or binding isN P -complete [3], this would result in solving an
N P -complete task for each individual to be repaired.

These considerations have led to the following compromise: The
randomly generated allocations of the EA are partially repaired us-
ing a heuristic. Possible complications detected later on during the
calculation of the binding will be considered by a penalty. Hence,
the mapping task can be divided in three steps (cf. Figure 5 for the
decoding algorithm):

1. the allocation of resourcesv ∈ Va is decoded from the in-
dividual and repaired with a simple heuristic (the function
allocation),

2. next the binding of the edgese∈ Em is performed (the func-
tion binding), and

3. finally, the allocation is updated in order to eliminate unnec-
essary verticesv ∈ Va from the allocation and all necessary
edgese∈ Ea are added to the allocation (the functionup-
date allocation()).

Thus, thedecoding function results in a feasible allocation and
binding of the vertices and edges of the process graphgp to the ver-
tices and edges of the architecture graphga. If no feasible binding
could be found, the whole decoding of the individual is aborted.

The allocation of vertices is directly encoded in the so-called
chromosome, i.e., the elements in a vectoralloc encode for each
vertexv∈Va if it is activated or not, i.e., a(v) = alloc(v). This sim-
ple encoding might result in many infeasible allocations. Hence,
a simple repair heuristic is applied. This heuristic only adds new
verticesv∈Va to the allocation and reflects the simplest case of in-
feasibility that may arise from non-executable functional vertices:
Consider the setVB ⊆ Vp that contains all vertices that can not be
executed, because not a single corresponding resource vertex is al-
located, i.e.,VB = {v∈Vp | ∀(v, ṽ) ∈ Em : a(ṽ) = 0}. To make the
allocation feasible (in this sense), we add for eachv∈VB, at most
oneṽ∈Va, until feasibility in the sense above is achieved.

The order in which additional resources are added has a large
influence on the resulting allocation. For example, one could be
interested in an additional allocation with minimal cost. As this de-
pends on the optimization goal expressed in the objective function

f , the order should automatically be adapted. This will be achieved
by the introduction of arepair allocation priority list LR coded in
the individual (see, e.g., [14] for a discussion on permutations). In
this list, all resourcesv∈Va are contained and the order in the list
determines the order the vertices will be added to the allocation.
This list also undergoes genetic operators like crossover and muta-
tion and can therefore be optimized by the Evolutionary Algorithm.

In this paper, the functionbinding is of special interest and should
be discussed in more detail. A binding is obtained by activating ex-
actly one incident edgee∈Em for each allocated vertexv∈Vp. The
problem of coding the binding lies in the strong inter-dependence
of the binding and the current allocation. As crossover or muta-
tion might change the allocation, a directly encoded binding could
be meaningless for a different allocation. Hence, a coding of the
binding is of interest that can be interpretedindependentlyof the
allocation. This is achieved in the following way:

All processes are bound in the order they appear in the binding
order listLO. For each processp∈Vp, a listLB is encoded as allele
that contains all incident edgese∈ Em to p. This list is seen as a
priority list and the first edgeek with ek = (v, ṽ) that gives a feasi-
ble binding is included in the binding, i.e., a(ek) := 1. The test of
feasibility is directly related to the definition of a feasible binding
(see Definition 6). As the priority lists contain all incident edges
e∈ Em, each individual contains a feasible binding iff it contains a
feasible allocation. Calculating a feasible binding for a given allo-
cation is equivalent to solve the underlying satisfiability problem.
To solve this problem, we can use fast heuristics that try to find
a feasible binding, or we use prohibitively slow correct methods.
Different methods are described and compared later in this paper.
When no feasible binding is found,β is the empty set, and the in-
dividual will be given a penalty value as its fitness value. Finally,
in the functionupdate allocation, vertices of the allocation that
are not used will be removed from the allocation. Furthermore, all
edgese∈Ea in the architecture graphga are added to the allocation
that are necessary to obtain a feasible binding.

3.2 Feasibility Test
As stated above, finding a feasible binding for a given allocation

is a complex task. The binding is performed by binding one pro-
cess after each other in the order of the binding order listLO of the
individual. When binding a process, the different mapping edges
are tested in the order of the binding priority listLB. To find a fea-
sible binding of the complete problem, only those mapping edges
are chosen which satisfy a feasibility test.

This feasibility test can be performed in different ways. The
first possibility is to solve the problem whether there still exists
a valid completion for all the unbound processes if the currently
tested mapping edge is chosen. Of course this will always find
the correct binding for each process, and each feasible allocation
results in a feasible binding. This problem can be expressed as a
boolean satisfiability problem which is satisfiable iff there exists
such a completion [8]. The boolean equation for this satisfiability
problem can be generated by interpreting the three requirements
from Definition 6.

The first requirement states that each activated mapping edge
ends at an activated resource. The corresponding boolean equation
is:

^
p∈Vp:a(p)=1

 _
m=(p,r)∈Em

a(m)∧a(r)

 (1)

The second requirement states that exactly one mapping edge
is activated for each process. The boolean equation from above
already ensures that at least one mapping edge for each process is
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Figure 6: (a) An infeasible binding may result from using the
sequential feasibility test whereas using the BDD feasibility test
guarantees a feasible solution in this case. (b) Dependencies
between four processes which cannot be analyzed even by the
BDD feasibility test.

activated. The following equation additionally ensures that at most
one mapping edge is activated for each process.^

mi=(p,r i),mj=(p,r j )∈Em:
a(p)=1∧r i 6=r j

a(mi)∨a(mj ) (2)

The third and last requirement states that communicating pro-
cesses have to be mapped to the same or to an adjacent resource.
This can be expressed by the following equation.

^
mi=(pi ,r i)∈Em:

a(pi)=1∧(pi ,p j )∈Ep

a(mi)
_

mj=(p j ,r j )∈Em:
a(p j )=1∧(r i=r j∨(r i ,r j )∈Er)

a(mj )

 (3)

As the Equations (1) - (3) have to be satisfied to allow a feasible
binding, the complete boolean equation is the conjunction of these.
The BDD for this equation can be built once and be used for each
individual. When this BDD is built, the test if a mapping edgem
still allows a feasible binding is just as simple as combining a(m)
with the BDD with a logic AND-function. So the feasibility test
can be done inO(|Em|+ |Va|) once the BDD is built [13]. Unfortu-
nately, for real-world problems, the BDD is prohibitively large and
thus this approach is not viable.

A second possibility is to check if the tested mapping edge is
not feasible with the binding performed up to this test. Thus, the
mapping edges are activated sequentially and the outcome of this
sequential feasibility teststrongly depends on both, the binding or-
der listLO and the binding priority listLB. This test is easy and fast
to perform. But as only the yet bound processes are considered, the
feasibility test might be trapped, even if the allocation is feasible.
This case is sketched in Figure 6(a). If process p1 is bound to the
resource r1 before binding process p2, the feasibility test will be
passed even though the only feasible binding isβ = {m2,m3}.

To overcome this drawback, relaxed version of the first feasibil-
ity test is proposed here. It is tested if the selection of a certain
mapping edge for a processp prohibits a feasible binding of any
direct predecessor or successor ofp. It has already been mentioned
that encoding the complete boolean equation in one BDD is not
feasible for real-world problems. As compromise, we constructed
a small BDD for each process. Equations (1) and (2) can be split-
ted into parts that contain only mapping edges incident to a single
process. These boolean equations are encoded in the BDD of the
corresponding process. The Equation (3) always contains mapping
edges of different processes. Hence, the implementation given by

Equation (3) must be considered in the BDDs associated withpi
andp j .

With these BDDs, we can test if the activation of mapping edge
mi prohibits the feasibility of the adjacent processes. Therefore,
we have to set a(mi) = 1 for the BDD associated with processpi
belonging tomi , and for all the BDDs associated with succeeding
processesp j . If one of the BDDs collapses to a logic 0 value, the
mapping edgemi would not allow to find a feasible binding and
thus will be rejected.

This method solves the problem shown in Figure 6(a). Of course,
this test generally is not able to find a feasible binding for each fea-
sible allocation. This is illustrated in Figure 6(b) where only these
bindings are feasible:{m1,m2,m4,m6} and{m3,m5,m7,m8}. But
as p1 and p4 do not have common neighbors, even the BDD feasi-
bility test may select the mapping edges m1 and m8 what prohibits
a feasible binding.

In this paper, we compare the sequential and BDD feasibility
test. Our results show that the BDD feasibility test can improve
the convergence even though the test itself is slower. These results
are not only interesting for the task of design space exploration, but
might also be applied to other combinatorial optimization problems
with search spaces containing only few feasible solutions.

4. EXPERIMENTAL RESULTS
In this section, we present experimental results from using the

new BDD feasibility test. To analyze the performance of our pro-
posed strategy, we have chosen a MOP from the area of embedded
system synthesis. The three objectives used during the optimiza-
tion are technical properties of embedded systems, namelyimple-
mentation cost, power dissipation, and latency. In the following,
we provide quantitative results from the comparison between the
sequential feasibility test and the BDD feasibility test. The PISA
(Platform independent Interface for Search Algorithms) [2] frame-
work was chosen for optimization purposes. In the present work,
the SPEA2 selection procedure [16] was applied.

The experiments are performed as follows: A generator pro-
gram is used to randomly construct MOP instances (specification
graphs), where several parameters determine the architecture, the
problem graph, mapping edges, and the attributes used to compute
the objective values. Due to different random values the generated
problem instances are similar in structure, but not equal. Each MOP
instance is optimized by both methods (with and without BDD fea-
sibility test). After the optimization of each problem instance, the
non-dominated solutionsXa found by both methods are combined
in a singlereference set XR. This reference set is Pareto-filtered and
is used to quantitatively assess the performance of both methods.

4.1 Problem Instances and Parameters
The MOP instances (specification graphs) can be generated from

a few parameters. The most important ones are: (i) The number of
resourcesr in the architecture graph. From these resources a subset
must be chosen during optimization. Hence, this number affects
the problem size. (ii) The number of processesp in the process
graphgp. This number also affects the MOP size. (iii) The number
of mapping edgesm per process. The number of mapping edges
has a large influence of the MOP size and complexity as discussed
before. (iv) The number of edges in the process graph is given by a
probability valuedp. This value determines the probability that two
processes are connected by an edge. Due to the feasibility require-
ment, the number of data dependencies affects the complexity of
the optimization problem. The complexity increases with the num-
ber of data dependencies. (v) The feasibility probabilityfp. This
value is used when the edgesEa of the architecture graph are cre-
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Figure 7: The mean ε-dominance and its standard deviation
over the number of generations using (a) the BDD feasibility
test and (b) the sequential feasibility test.

ated. For each mapping possibilitymi = (pi , r i),mj = (p j , r j )∈Em
of two adjacent processespi and p j , the resourcesr i and r j are
connected with probabilityfp to satisfy the data dependency. The
more of these edges are created, the more feasible solutions exist.
Smaller values offp result in search spaces containing less feasible
solutions.

We created four classes of problem instances with feasibility
probabilitiesfp = 20%,30%,40%,50%. For each of these problem
classes we created 10 different problem instances. The genetic al-
gorithm was run 10 times for each problem instance with both fea-
sibility tests. The different values offp make the problem classes
to vary in their number of solutions. Problems with a small feasibil-
ity value have less solutions than problems with a large feasibility
value. The different problem instances all havep = 45 processes
andr = 15 resources. Each process hasm= 2. . .4 random mapping
edges, anddp = 30%.

The parameters for the EA are chosen as follows: The population
size was set to 150. For recombination, 50 children were created
from 50 parents by single-point crossover. The mutation rate was
set to|decision variables|−1. The mutation operation is either sin-
gle bit flip or order-based mutation.

4.2 Qualitative Results
The performance indicators used in the present work are: (i) The

coverage[17] which measures the fraction of non-dominated points
in the reference setXR found by a particular optimization run (Xa).
(ii) The ε-dominance[12] whereε is the smallest value such that
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Figure 8: The mean coverage and its standard deviation over
the number of generations using (a) the BDD feasibility test and
(b) the sequential feasibility test.

the setXa,ε dominates the reference setXR. Xa,ε is obtained by
scaling each element in the approximation setXa by the factor1

ε .
A detailed discussion on performance indicators can be found in
[18]. The approximation setsXa obtained from both optimization
methods are compared to the reference setXR by using these per-
formance indicators. Moreover, the average time needed for a fix
number of generations is calculated as well. The estimation of the
consumed processor time is realized by the ”clock”-function of the
Linux operating system.

Figure 7 shows the meanε-dominance and its standard deviation
for (a) the BDD feasibility test and (b) the sequential feasibility
test. The graph shows the average of the 100 runs for each problem
class, and the vertical bars indicate the standard deviation. As one
can see, for hard problems (smallfp values) the BDD feasibility
test makes the EA to converge faster against the optimal value of
1.0 than the sequential feasibility test. Also the standard deviation
is smaller with the BDD feasibility test.

Figure 8 shows the mean coverage and its deviation for (a) the
BDD feasibility test and (b) the sequential feasibility test. Here, the
BDD feasibility test always outperforms the sequential feasibility
test. Moreover, the harder the problem is, the better is the BDD
feasibility test. In the case of the coverage metric, the standard
deviations are comparable.

Figure 7 and Figure 8 show how the different feasibility tests
converge over the number of generations. To show the speed dif-
ference, the coverage is drawn over the average computation time
in Figure 9. As the sequential feasibility test is faster, its calcula-

1951



 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0  200  400  600  800  1000

C
(X

a,
X

R
)

Time [s]

BDD Feasibility 20
BDD Feasibility 30
BDD Feasibility 40

Sequential Feasibility 20
Sequential Feasibility 30
Sequential Feasibility 40

Figure 9: The mean coverage over the time. As the sequential
feasibility test is faster than the BDD feasibility test, the calcu-
lation of the 1000 generations finishes earlier.

tion of 1000 generations finished earlier. Nevertheless, one can see
that the BDD feasibility test is worse in the beginning. This is also
due to the time needed for constructing the BDDs. But, in the pres-
ence of search spaces containing few feasible solutions only, the
BDD feasibility test clearly outperforms the sequential feasibility
test after a small amount of time.

5. CONCLUSIONS AND FUTURE WORK
We have introduced a method to improve the convergence of EA-

based algorithms for problems with a search space containing many
infeasible solutions. This novel approach makes use of symbolic
techniques to guide the search of the EA towards the feasible re-
gion. We have presented experimental results which clearly show
the benefits of our approach. Although we used the example of de-
sign space exploration of embedded systems, there is however the
possibility to generalize our approach to other constrained combi-
natorial optimization problems.

In the near future, we will generalize our approach of integrating
symbolic techniques into EAs. Moreover, we plan to study our
methodology on arbitrary industrial problems.
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